17.1-3

Suppose we perform a sequence of \mathbf{n} operations on a data structure in which the ith operation costs i if i is an exact power of 2 , and 1 otherwise. Use aggregate analysis to determine the amortized cost per operation.

Let c_{i} be the cost of the ith operation.
$c_{i}=\quad\{i \quad$ if i is an exact power of 2
\{1 otherwise
In table form, we have:

Operations	Cost
1	1
2	2
3	1
4	4
5	1
and so on...	

n operations will then cost:

$$
\sum_{i=1}^{n} c_{i} \leq n+\sum_{j=0}^{\lg n} 2^{j}=n+(2 n-1)<3 n
$$

thus we have,
Average cost of operations $=$ Total cost (3n)/ number of operations (n) <3.
And by aggregate analysis, the amortized cost per operation is $\mathrm{O}(1)$.

17.2-1

Suppose we perform a sequence of stack operations on a stack whose size never exceeds k. After every k operations, we make a copy of the entire stack for backup purposes. Show that the cost of \mathbf{n} stack operations, including copying the stack, is $\mathbf{O (n)}$ by assigning suitable amortized costs to the various stack operations.

From the description, we should have PUSH, POP and COPY.
If we assign a value of $\$ 2$ to each PUSH and POP, and use $\$ 1$ of it for each call, we have a $\$ 1$ credit stored. When we reach k operations, we will have $\$ \mathrm{k}$ credits to pay for the copy on the stack. Since the amortized cost of each operation is $O(1)$ and the amount is never negative, the total cost of n operations is $\mathrm{O}(\mathrm{n})$.

17.2-2

Redo Exercise 17.1-3 using an accounting method of analysis.
Let c_{i} be the cost of the ith operation.
$c_{i}=\{i \quad$ if i is an exact power of 2
\{1 otherwise
We will charge each operation $\$ 3$:
If i is not a power of 2 , pay $\$ 1$ and store $\$ 2$ as credit.
If i is a power of 2 , pay $\$ i$ with credit.

Operation	Cost	Actual cost	Credit remaining
1	3	1	2
2	3	2	3
3	3	1	5
4	3	4	4
5	3	1	6

Because the amortized cost is $\$ 3$ per operation, the sum of all amortized c_{i} is $=3 n$.
From 17.1-3 we know that the sum of all $\mathrm{c}_{\mathrm{i}}<3 \mathrm{n}$, thus the amount of credit is never negative.
Therefore, since the amortized cost of each operation is $O(1)$, and the amount of credit never goes negative, the total cost of n operations is $O(n)$.

18.2-1

Show the results of inserting the keys
$\mathbf{F}, \mathbf{S}, \mathbf{Q}, \mathbf{K}, \mathbf{C}, \mathbf{L}, \mathbf{H}, \mathbf{T}, \mathbf{V}, \mathbf{W}, \mathbf{M}, \mathbf{R}, \mathbf{N}, \mathbf{P}, \mathbf{A}, \mathbf{B}, \mathbf{X}, \mathbf{Y}, \mathbf{D}, \mathbf{Z}, \mathbf{E}$ in order into an empty B-tree with minimum degree 2. Draw only the configurations of the tree just before some node must split, and also draw the final configuration.

I apologize ahead of time if this is unclear but this is the only way I could think of writing this out 1.

$$
[\mathrm{F}][\mathrm{Q}][\mathrm{S}]
$$

2.

[Q][][]
$[\mathrm{C}][\mathrm{F}][\mathrm{K}] \quad[\mathrm{S}][\mathrm{]}]$]
3.
$\begin{array}{lll} & {[\mathrm{F}][\mathrm{Q}][]} & \\ {[\mathrm{C}][][]} & {[\mathrm{H}][\mathrm{K}][\mathrm{L}]} & {[\mathrm{S}][\mathrm{T}][\mathrm{V}]}\end{array}$
4.
[F][Q][T]
$[\mathrm{C}][][] \quad[\mathrm{H}][\mathrm{K}][\mathrm{L}] \quad[\mathrm{S}][][] \quad[\mathrm{V}][\mathrm{W}][]$
5. (Combined a few steps)
[Q][][]
[F][K][]
[T][][]

6.
[Q][][]
[F][K][]
[T][][]
$[\mathrm{C}][\mathrm{C}]$] [H][][] [L][M][N] [R][S][] [V][W][]
7.

8.
[Q][][]
$[\mathrm{F}][\mathrm{K}][\mathrm{M}]$
[T][][]
$[\mathrm{A}][\mathrm{B}][\mathrm{C}][\mathrm{H}][\mathrm{]}[][\mathrm{L}][][][\mathrm{N}][\mathrm{P}][]$
$[\mathrm{R}][\mathrm{S}][\mathrm{]} \quad[\mathrm{~V}][\mathrm{W}][\mathrm{X}]$
9.

$[\mathrm{F}][\mathrm{K}][\mathrm{M}]$	$[\mathrm{Q}][\mathrm{c}]$		
$[\mathrm{A}][\mathrm{B}][\mathrm{C}][\mathrm{H}][][][\mathrm{L}][][][\mathrm{N}][\mathrm{P}][]$	$[\mathrm{R}][\mathrm{S}][]$	$[\mathrm{T}][\mathrm{W}][\mathrm{C}][]$	$[\mathrm{X}][\mathrm{Y}][]$

10. (Combined a few steps)
$[\mathrm{B}][\mathrm{F}][\mathrm{]} \quad[\mathrm{M}][\mathrm{J}[\mathrm{]}$
[A][][] [C][D][][H][][]
[L][][] [N][P][]
[K][Q][]
[B][F][]
[M][][]
[L][][] [N][P][]
[R][S][] [V][][] [X][Y][Z]

18.2-2
 Explain under what circumstances, if any, redundant DISK-READ or DISK-WRITE operations occur during the course of executing a call to B-TREE-INSERT.

A DISK-WRITE operation can be redundant whenever the root node is changed, (so when the size of the tree is h and there are full nodes to the $\mathrm{h}-1$ level).
When a B-TREE-SPLIT-CHILD function is performed recursively, we don't perform the DISKREAD operation.
Therefore, there isn't a redundant DISK-READ or DISK-WRITE on a B-TREE-INSERT.

References:
Class Textbook and solution manual (3rd ED)

